Assessing Poultry House Environments

Brian Fairchild
The University of Georgia

UGA Cold Weather Ventilation Workshop 2012

Poultry House Environment
- Temperature
- Relative Humidity
- Light intensity
- Carbon Dioxide
- Carbon Monoxide
- Ammonia
- Litter moisture
- Water quality
- House tightness

Data Loggers
- Temperature
- RH
- Light
- Gases
 - Ammonia
 - CO2
 - CO

More data provides more information

Temperature & RH

Temperature
Relative Humidity

Temperature, RH & Airspeed

- Kestrel Wind Meter

Environmental Monitoring: Kestrel Anemometer

<table>
<thead>
<tr>
<th>Price</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$70</td>
<td>$100</td>
<td>$150</td>
<td></td>
</tr>
</tbody>
</table>

Infrared Temperature Gun

- $55

Water consumption and lighting programs

Infrared Camera

- Czarick and Lacy, 2001
Measuring Light intensity

- Angle of light meter
- Straight up
- Light source

Litter Moisture

Collecting Samples

- Trench method

Random Surface Samples

- Weigh ~100g of litter from composite sample
- Dry in oven for 24 h at 120 F
- Weigh dried sample

\[\frac{(\text{Wet Wt.} - \text{Dry Wt.})}{\text{Wet Wt.}} \times 100 \]

Litter Moisture

- The best way to quickly determine litter condition is to grab a handful near a drinker and squeeze.
 - If the litter clumps together in a ball, it is too wet.
 - If the litter falls apart immediately, it is too dry, creating dusty conditions.
 - If the litter clumps briefly and then crumbles apart, it has the correct moisture content — about 20 to 25 percent

Evaluate Water Quality

- Minerals
 - Fe, Mn, Mg, Ca, SO4, etc...

- Microbe content
 - Total plate count
 - E. coli

- Conduct annually

Static Pressure Test

- Magnehelic Pressure Differential Gauge (Dwyer Model # 2000-00)
 - $75 for gauge
 - $35 for portable kit

- Turn on fan 48” or two 36”
- Conduct 2 or 3 times per year
Use Smoke Emitters

Air Quality

- To manage air quality, gases must be able to be detected and quantified
- Identify problems
- Know when to address problems
- Know if solution is effective

Carbon Monoxide (CO)

Carbon monoxide meters are a useful tool

- Reasonable cost $200 - $300
- Most major instrument manufacturers (Fluke, Extech, Telaire, etc.)
- Google to find these products

Using a carbon monoxide meter

- Check for CO prior to chick placement
- In the morning
- Cold weather
- Check individual brooders

Another useful tool is a carbon monoxide data logger

- Low CO levels may be incorrect conclusions
- Levels are highest when you are not there
Carbon monoxide data logger

- Monitors CO levels on a continuous basis for ...
- Day, week, month(s)
- Downloadable to a PC → easy to produce graphs.

Extremely High CO Concentrations

Acceptable CO Concentrations

To truly determine if Carbon Dioxide is a problem you have to measure it.

- Telaire 7001 ($430)
- Good for spot checking and can be connected to data logger for long term monitoring.

Draw Tubes

- Tubes for multiple gases
 - CO2, CO, NH3, etc..
- Pump = $150
- Tubes = $30/box of 10
Detecting and measuring NH₃

- Produce in the litter
 - More concentrated at bird level
 - Measuring at bird level is important
- Ventilation
- Time of day

NH₃ levels vary throughout the day

Detecting and measuring NH₃

- Smell
 - Humans – 5-50 ppm and above
 - Loose sensitivity over repeated exposure
 - Not able to detect reliably
 - Can not depend solely for bird health

In most cases, if you can smell ammonia, then the levels are probably already too high.

Detecting and measuring NH₃

- Smell
 - In most cases, if you can smell ammonia, then the levels are probably already too high
 - Increase ventilation
 - Monitor relative humidity

Ammonia Measurement

- Hydrion Ammonia Test Paper
- Draw Tubes
- Passive Tubes
- Electric meters
 - Electrochemical
 - Electrochemical combinations

Hydrion Ammonia Test Paper

- Wet a small piece of the paper with distilled H₂O
- Expose it to the air (~15 sec)
- Chemical react in the paper and a color change occurs - compare to chart

- Fairly accurate, but not precise
- Can determine if it is high
- Sampling error
Gas Detection Tubes

- Most common
- Requires pump
- One point in time
- Accuracy can be variable
 - Sampling errors
 - Errors in reading
- Tubes intended for single measurement
 - Multiple measurements can be done

Passive Dosi-Tube

- Time weighted measurement of ammonia
- No pump is required
- Accuracy can vary
- Price will limit use

Electric Ammonia Meters

- Electrochemical
 - Most common
 - Can be very accurate
- Disadvantages
 - Environment
 - Calibration
 - Cost
- Electrochemical combinations

Electric meters – continuous monitoring

![Graph showing Ammonia Concentrations](chart.png)

- Ammonia (ppm) over time
- Data points marked by color

UGA Electrostatic Study

![Image of Electrostatic Study equipment](image.png)

Ritz et al., 2004
Measuring Ammonia Accurately
- More accuracy and sensitivity
- Requires more expensive equipment
- All ammonia sensors saturate
 - Depends on:
 - Concentration
 - Exposure time

Draeger CMS Analyzer
- Draws air sample through chip
- Provides a numerical reading

Photoacoustic Analyzer
- Uses combination of infrared light and sound to detect gases
- High sensitivity
- Expensive
 - $42,000

Gas Washing Bottles
- NH₃ trapped in Sulfuric Acid
- N content analyzed by spectrophotometer
- Time weighted average
- Accuracy & sensitivity good
- Labor intensive
 - Approximately $15 per sample

Ammonia Detectors

Poultry Ammonia Sensor
Ammonia Measurement

- Be aware of the limitations for each method
- Be aware of potential for errors
 - Improper equipment use
 - Ventilation status
 - Instrumentation in need of maintenance
- Litter condition
- Relative humidity

Any Questions?

Brian Fairchild
Email: brianf@uga.edu

www.poultry.uga.edu
www.poultryventilation.com